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through-passages of a set of 13 focal species were recorded at 26 culverts and bridges on busy road corridors 

in 2017 and 2018.  A structure design classification system was developed that provided explicit links between 

structure design types and a variety of movement surface types used by wildlife for through-passage.  Game 

camera data substantiated the ability of several structure design types to offer specific kinds of wildlife-usable 

dry movement surfaces, and variation in through-passage data among different design types illustrated the 

influence of interactions between structure design characteristics and movement surface availability on the 

frequency of wildlife use.  In particular, bridge spans offered the greatest number of movement surface types, 

generally supported the highest through-passage frequencies, and was used by the most wildlife species.  

Pipe and squash pipe culverts offered more limited through-passage suitability for wildlife.  We were not able 

to assess modern embedded box culvert designs due to enduring on-site habitat disturbance from 

construction activities, but our data from other structures suggest that they will prove valuable for wildlife 

through-passage once vegetation in construction footprints matures.  Older flat bottom box culvert designs 

performed poorly in terms of wildlife use.  Our results also suggest a relationship between factors relating to 

stream hydrology and movement surface type/availability in all structure design types intended to feature 

natural stream bottoms, where streamflow and deposition/erosion governs the formation and maintenance 

of movement surfaces of varying levels of suitability for wildlife movement.  Project results also confirmed 

that the modified Movement Guild framework presented in Marangelo and Farrell (2016) that relates 

potential species use to culvert/ridge size accurately reflected observed patterns of wildlife structure use, 

except for bears.   A small number of bear through-passages in this study suggests that bears should no longer 

be considered among the species likely to use small size class culverts. 
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Abstract 
 

This project gathered and analyzed game-camera data on the frequency of wildlife movement through bridges and 

culverts in Vermont to generate results-based recommendations for improving the permeability of highways in Vermont 

for wildlife.  By better understanding the characteristics of transportation structures that wildlife are more likely to use 

for moving under roadways, state resource and transportation agencies will have a greater ability to manage road 

corridors in ways that can reduce the inherent habitat-fragmenting effects of the road network in Vermont.   Specifically, 

this project assessed the effects of different types of transportation structure designs on usability by wildlife for under-

road movement (through-passage).    1,347 through-passages of a set of 13 focal species were recorded at 26 culverts and 

bridges on busy road corridors in 2017 and 2018.  A structure design classification system was developed that provided 

explicit links between structure design types and a variety of movement surface types used by wildlife for through-

passage.  Game camera data substantiated the ability of several structure design types to offer specific kinds of wildlife-

usable dry movement surfaces, and variation in through-passage data among different design types illustrated the 

influence of interactions between structure design characteristics and movement surface availability on the frequency of 

wildlife use.  In particular, bridge spans offered the greatest number of movement surface types, generally supported the 

highest through-passage frequencies, and was used by the most wildlife species.  Pipe and squash pipe culverts offered 

more limited through-passage suitability for wildlife.  We were not able to assess modern embedded box culvert designs 

due to enduring on-site habitat disturbance from construction activities, but our data from other structures suggest that 

they will prove valuable for wildlife through-passage once vegetation in construction footprints matures.  Older flat 

bottom box culvert designs performed poorly in terms of wildlife use.  Our results also suggest a relationship between 

factors relating to stream hydrology and movement surface type/availability in all structure design types intended to 

feature natural stream bottoms, where streamflow and deposition/erosion governs the formation and maintenance of 

movement surfaces of varying levels of suitability for wildlife movement.  Project results also confirmed that the modified 

Movement Guild framework presented in Marangelo and Farrell (2016) that relates potential species use to culvert/ridge 

size accurately reflected observed patterns of wildlife structure use, except for bears.   A small number of bear through-

passages in this study suggests that bears should no longer be considered among the species likely to use small size class 

culverts. 
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1. Project Overview 
 

The rationale for this project is rooted in the evolving field of road ecology, which has thoroughly 

demonstrated that roads and wildlife impact each other in mutually detrimental ways.  There are 

thousands of miles of permanent roads in Vermont (Anderson and Sheldon 2011), which, along with 

associated development, are significant barriers for wildlife movement and a source of mortality for many 

species.  Also, vehicle-wildlife collisions create extensive vehicle damage and human deaths; eighteen 

people have lost their lives in accidents with moose in recent years in Vermont, roughly averaging one 

human fatality per year (VT F&W).   In the United States overall, an estimated one to two million collisions 

occur each year between cars and large, wild animals1.   These issues affect the safety of wildlife and 

humans and impairs a conservation value of increasing importance: the connectedness of forested 

habitats for wide-ranging terrestrial throughout and beyond Vermont.  This project represents perhaps 

the most extensive research effort to develop road corridor management options to encourage the 

movement of wildlife underneath through bridges and culverts in the northeastern US to date. 

This study builds on the preceding phase of this project (Marangelo and Farrell 2016), which generated 

crucial insights about wildlife use of transportation structures in Vermont for through-passage.  

Specifically, we: 

1) Set up a camera monitoring system to document relationships between wildlife use frequency 

and specific design attributes of transportation structures found among the types of culverts 

that wildlife has been shown to use to move under roadways from Marangelo and Farrell 

(2016).   

2) Interpret project results in a way that can inform, influence, and improve regional decision-

making and management practices in road corridors to decrease the habitat-fragmenting effects 

of road corridors for wildlife. 

 
For example, if a stretch of road is known to have substantial wildlife movement over the roadway and a 

nearby bridge, culvert or other structure is due for an upgrade, project results could help make the case 

for informing structure replacement or retrofit in ways that will provide greater opportunity for the 

movement of wildlife under the roadway.   Similarly, where roads form near-impermeable wildlife 

movement barriers between large blocks of forested habitats, data-based guidance on improving existing 

culverts and bridges for wildlife movement may restore habitat connectivity in ways that can specify 

benefits for individual wildlife species or groups of species. 

The importance of this issue is augmented by the increasingly urgent conservation need to improve the 

functionality of a regionally connected network of habitat for wildlife.  By decreasing the habitat-

fragmenting barrier effect of major road corridors, wildlife movement between large forested habitat 

blocks will increase, and this will help maintain genetic diversity of wildlife populations, better enabling 

movement-related adaptation needs that may arise in response to increasing rates of habitat change 

 
1 According to Wildlife-Vehicle Collision Reduction Study: Report to Congress (FHWA-HRT-08-034), an estimated one 
to two million collisions occur each year between cars and large, wild animals in the United States. This presents a 
real danger to human safety as well as the viability of some wildlife populations. 
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driven by climate change.  Statewide highway infrastructure that is managed to increase wildlife 

permeability in key areas, thereby better connecting habitats otherwise separated by road corridors, is an 

important part of creating and maintaining a habitat network that links regionally significant habitat areas 

(such as between the Green and Adirondack Mountains). 

The first phase of this study (Marangelo and Farrell 2016) 1) substantiated a Passage Assessment System 

Framework modified from Shilling et al (2012) for identifying potential species use based on structure size 

characteristics; 2) found that site characteristics such as structural connectivity of forested habitats that 

links habitat on either side of the road through a structure appeared to have a substantial influence on 

the frequency of structure use by wildlife; and 3) hypothesized  that a good deal of otherwise unexplained 

variation in through-passage data may be related to the influences of transportation structure 

characteristics on wildlife through-passage frequency, and these characteristics are linked to specific 

structure designs.   

This study builds on the results of the preceding study by primarily addressing questions related to the 

third Phase 1 study outcome.  Using our refined understanding of the effects of site characteristics on 

wildlife structure use from Marangelo and Farrell (2016), for this study we sought to select a range of 

different structure designs at structure sites that were most likely to be used by wildlife for through-

passage.   Resulting through-passage data from these sites would is then used to better characterize the 

effects of different structure design types on wildlife use for under-road movement. 

2. Methods 

2.1. Site Selection and Game Camera Installation 
We identified 26 bridges and culverts to collect data on wildlife through-passage with game cameras 

(Table 1; Figures 1, 2, 3, and 4), where a through-passage is the movement of an animal under a roadway 

through a culvert or bridge.   Cameras were setup at most sites in April 2016, with a small number of sites 

being set up later that summer.  Camera data collection concluded in December 2018. 

To select study sites, we examined all bridges and culverts on state and interstate highways that intersect 

a spatial data layer that identify a habitat network connecting large forested habitat blocks in Vermont 

(Vermont Agency of Natural Resources, 2016).    Our site selection process was based on мύ άŦŀǘŀƭ Ŧƭŀǿǎέ 

screening criteria from the Passage Assessment System (PASS; Kintsch and Cramer 2011) that evaluates 

ŎǳƭǾŜǊǘǎ ŦƻǊ ǇƻǘŜƴǘƛŀƭ ǳǎŀōƛƭƛǘȅ ōȅ ŀǘ ƭŜŀǎǘ ƻƴŜ άƳƻǾŜƳŜƴǘ ƎǳƛƭŘέ ƻŦ ǎǇŜŎƛŜǎ ŦǊƻƳ ǘƘŜ ƳƻŘƛŦƛŜŘ t!{{ 

framework from Marangelo and Farrell (2016); 2) insights on wildlife/transportation structure use 

generated by Marangelo and Farrell (2016), which suggested that a suite of structure and site 

characteristics influenced the frequency of wildlife transportation structure use:  the availability of dry 

movement surfaces within a structure; movement surface composition; and the structural connectivity of 

forested habitat through a transportation structure site linking larger forest blocks on either side of the 

roadway (we screened out structures that featured discontinuous structural connectivity site 

characteristics Marangelo and Farrell (2016)). 

All structures visited were ranked from 1 to 4 based on PASS-ŘŜǊƛǾŜŘ άǳǎŀōƛƭƛǘȅ ŎǊƛǘŜǊƛŀέ ǘƘŀǘ ŦŀŎƛƭƛǘŀǘŜ ƻǊ 

discourage wildlife use: 

¶ Fluvial geomorphic characteristics that encourage or impair wildlife movement (e.g. perched 

culverts, high gradient culverts, etc). 
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¶ Upstream and downstream habitat/cover in proximity to the structure 

¶ Other nearby human uses/disturbances 

¶ Overall accessibility of culvert entrance and exits (blocking vegetation, steepness of the valley 

walls surrounding the channel) 

¶ Water depth and water coverage (degree of inundation) inside of the structure (are there any 

dry or shallow passable areas?) 

¶ Proximity and type of development to structure 

We then developed a list of structure design types that we believed offered different kinds of movement 

surface availability (Table 2; more detail in Appendix A), and attempted to achieve, as much as possible, 

equal representation of each design type in our set of sites selected for this study. 

 
Table 1. Twenty-six camera sites for monitoring wildlife use of transportation structures with structure 
size class and design type.  More details are found in Appendix A 

Structure Road Town Size class Design type 

4-42 US 4 Bridgewater med/large span 

7-19-5 US 7 Sunderland small squash pipe 

7-23-8 US 7 Manchester small pipe culvert 

9-17 VT 9 Woodford small pipe culvert 

100-118 VT 100 Killington med/lg new precast box culvert*  

100-47 VT 100 Wilmington med/lg new precast box culvert*  

100-78 VT 100 Jamacia med/lg span*  

100a-8 VT 100a Plymouth med/lg span*  

113-15 VT 113 Vershire small squash pipe 

113-19 VT 113 Vershire med/lg span 

122-24 VT 122 Glover small old box culvert 

125-19 VT 125 Ripton med/lg new precast box culvert* 

12a-10 VT 12a Braintree med/lg span 

133-13 VT 133 Ira med/lg span with footing shelf 

155-6 VT 155 Mt Holly small pipe culvert 

16-13 VT 16 Glover small pipe culvert 

17-24 VT 17 Starksboro med/lg arch culvert 

17-32 VT 17 Waitsfield med/lg span 

17-36 VT 17  Waitsfield med/lg span 

30-22 VT 30 West Townshend small old box culvert 

30-47 VT 30 Winhall small new precast box culvert*  

9-25a VT 9 Searsburg med/lg span 

9-25b VT 9 Searsburg med/lg span 

I91-17-2 I 91 Putney med/lg "V" bottom box culvert 

I91a I 91 Sheffield small pipe culvert 

Union Street Union Street Brandon med/lg span 

* new post-Irene structure 
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Figure 1. Map of ŎǳǊǊŜƴǘ ŀƴŘ ǇǊŜǾƛƻǳǎ όάǇƘŀǎŜ мέύ site locations and Vermont Conservation Design 
Biofinder connectivity block layers (VT ANR 2016). 



13 
 

 

Figure 2. Map of site locations in southern Vermont and Vermont Conservation Design Biofinder 
connectivity block layers (VT ANR 2016). 
































































